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Domain stability, competition, growth, and selection in globally constrained bistable systems
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A general globally constrained reaction-diffusion equation is suggested that describes formation of equilib-
rium domains and competition between domains in bistable media. We study the stability properties of domains
(strips and perfect circlular or spherical “drops”) in one, two, and three dimensions. The dynamics of the
distribution function (DF) of many drops with respect to their radii is mapped into a mean-field model of
Ostwald ripening. A family of similarity solutions for the DF is found, and the long-standing problem of

selection rule for the “correct” asymptotic DF is solved.

PACS number(s): 47.54.+r, 64.60.My, 64.60.Cn

Many pattern formation phenomena outside of equilib-
rium originate in the interplay between local and global dy-
namics and diffusion [1,2]. As an example, consider a
bistable medium, describable by a dimensionless scalar
reaction-diffusion equation (RDE):

du

= =V f(up), M

where u(r,t) is an order parameter and p is an additional
parameter (inhibitor). We assume that the characteristic di-
mension of the system L>1. At fixed p, the function
f(u,p) has three zeros, u(p)<u,(p)<u,(p), such that
df/du<0 for u=u,, (stable phases 1 and 2) and >0 for
u=u, (unstable phase). Start with the one-dimensional (1D)
case. At fixed p this system does not support large-scale
equilibrium domains unless the area rule,

uy(p)
[ rprau=o. @

uqy(p

holds. In general, Eq. (2) can be satisfied only for a special
choice (say, p..) of the parameter p. For p#p . strips of the
metastable phase shrink, and only one of the phases survives
(e.g., Ref. [1], p. 23). Even for p=p,, the length ratio of the
two phases L /L, is arbitrary, as the phases are not recov-
ered after a perturbation. The situation changes significantly,
if some (possibly implicit) dynamics p= p(¢) of the inhibitor
is allowed by imposing a global constraint on the system, so
that the inhibitor p = p(t) can adjust itself to the momentary
positions of the interphase boundaries (domain walls) and
arrest their motion. A large variety of such physical and
physico-chemical systems have been studied in 1D. These
include, first of all, many types of electrothermal domains in
semiconductors, metals, and superconductors, reviewed in
Ref. [3] (some of them have been known since the beginning
of this century). Bistable heterogeneous chemical reactions
[4], thermal contraction in weakly ionized plasmas [5], and
radiative condensations in optically thin plasmas [6] provide
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further examples. Besides, there is a number of related sys-
tems, complicated by the presence of an additional local
variable [7,8].

In each of these systems, the function f(u,p) and the
form of integral constraint are quite different (the latter can
follow from such diverse conditions as constant voltage [3],
constant average temperature [4], mass conservation [6],
etc.). Therefore, the first question that we shall address con-
cerns the general conditions, when the stable two-phase co-
existence (STPC) (or domain stability) is possible in 1D.
This question was addressed by Elmer, who derived a nec-
essary condition for STPC for a particular system (voltage-
controlled ballast resistor) [9]. We shall derive an important
additional criterion which, combined with Elmer’s criterion,
provide the necessary and sufficient condition for STPC. In
higher dimensions, the problem has received much less at-
tention [10—12] (see also Ref. [13], p. 3137). In this case, the
long-time multidimensional dynamics are strongly influ-
enced by the domain interface curvature, and we shall
present a number of results on the domain equilibrium, sta-
bility, and growth. In particular, we show that the dynamics
of a large number of domains can be mapped into a classical
mean-field model of Ostwald ripening. Finally, we resolve a
long-standing controversy in the latter model.

We shall consider Eq. (1) in a finite region ). Assume for
simplicity that none of the functions f, K, u,, and u,, nor
their derivatives introduce any small or large parameters, and
that the typical domain size L, is much larger than the width
of the interphase boundary (which is of order unity). The
small parameter L, ' will be very important in our theory.
We employ a general functional form of the integral con-
straint:

L)K[u(r,t),p(t)]dr:const. (3)

Equations (1) and (3), complemented with the initial condi-
tions [we usually assume the no-flux condition (Vu),=0 as
the boundary condition] represent a closed set.

Consider the large-scale nonuniform equilibria. In 1D,
these are alternating strips of phases 1 and 2. A necessary

3491 © 1996 The American Physical Society



3492

stability condition can be obtained if we consider the short-
time dynamics and therefore neglect the diffusion term in Eq.
(1). We employ this equation separately for the phases 1 and
2, while Eq. (3) takes the simple form L ,;K(u(p),p)
+L,K(u,(p),p)=const. We require that steady state solu-
tions u, ,=u »(p) with some p=p,=const obey the global
constraint for L,,#0. Linearizing these three equations
around the steady state, one arrives at a quadratic character-
istic equation for the growth or damping rate of small per-
turbations, similar to that obtained by Elmer [9] [see his Eq.
(3.11)]. This equation yields the required stability condition
in terms of two straightforward but cumbersome inequalities
containing the u and p derivatives of functions f and K,
evaluated at each of the two steady states. We shall call these
inequalities the Elmer inequalities and assume in the follow-
ing that they hold. The characteristic time scale for relaxation
is typically of order unity, the fast time scale of our theory.

Now we consider the long-time dynamics and take into
account the diffusion term VZ2u=4?u/dx>. A collection of
alternating equilibrium strips [14] now requires p=p, . In
the “pure” phases we have u=U; and u=U,, where
U,,=u,5(p,). The profile of the (standing) transition front
U(x) between any two adjacent strips can be easily found
analytically. In particular, the x derivative of this solution
(the absolute value of this derivative will be denoted by v)
can be expressed through the solution itself:

172

dU; U2
Lt e suup==+ ZLff(u,p*)du )

Now we find the stability condition for this nonuniform equi-
librium. Let p deviate slightly from the equilibrium value
P« sothat p(t)=p,.+ op(t), oSp<<p, . Strips of one of the
phases will start expanding (the other phase shrinking). We
shall see a posteriori that the characteristic relaxation time is
of the order of L ;> 1. This enables one to simplify the analy-
sis considerably. First, in the regions of the pure phases
u(x,t) rapidly (on a time scale of order unity) adjusts to the
slowly changing value of the inhibitor p(#): u;,=u;(p).
Second, one can look for a traveling wave solution in the
regions of domain walls: u(§), é=x—['c(t')dt’, with a
small and slowly varying front speed c(¢). Technically, we
employ the well-known result for constant dp<<p, and c
(see, e.g., [1], p. 21), and then permit their slow time varia-
tions. The domain wall speed is

5f[ﬁf(u,p)/r9p*]du
fg%v(u)du

c(t)=—gép(t), g= &)

A positive value of c(¢) corresponds to the front moving
toward phase 2. Here and in the following the p, derivative
means the p derivative, evaluated at p=p, . Obviously, the
front speed vanishes if Sp(#)—0. We shall assume that
g>0.

Now we differentiate Eq. (3) with respect to time and
substitute du/dt separately in the regions of the pure phases
and domain walls. We obtain
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Here N is the total number of domain walls in the equilib-
rium. Also,

dK
dp.

oK
du

dul’z
u:U]V2 dp*

oK
12 P

(7)

u:Ul’2

Equation (6) shows that the strips are stable as long as
7>0. In this case p(t)—p, , the e-fold relaxation time be-
ing 7. Correspondingly, the front speed goes to zero and the
steady state is restored, as it was indeed observed in many
systems, where 7 happens to be positive (see an extensive list
of experiments in Ref. [3]). The relaxation time 7 is typically
of order L/N;=L,>1 as expected. Combination of the
Elmer inequalities and inequality 7>0 represents the neces-
sary and sufficient condition for the domain stability. Notice
that stability of any single domain remains marginal with
respect to its translation within the region occupied by the
other phase. The true positions of the domain walls are de-
termined by the initial conditions.

Now we extend the theory to the 2D and 3D cases. Let the
region {) contain a number of large-scale ““drops” of phase 1
on the background of phase 2, and that the distances between
different drops, and between any drop and the system bound-
ary is much larger than the transition layer width (that is,
than unity). The motion of a domain interface will be af-
fected, in addition to Jp, by its (presumably small) local
curvature. Looking for the front speed, we can employ the
2D and 3D results obtained for constant §p and .7 (e.g., [1],
p. 28) and then permit their slow time variation:

c(t)=—gop(t)—.711), (8)

where . 7" is the local curvature of the interface in 2D, or the
sum of the two local principal curvatures in 3D. .7 is de-
fined to be positive if the interface is convex towards phase 2
and negative otherwise. It is clear from Eq. (8) that an equi-
librium implies 6p = —.7% /g = const. Therefore, only a drop
with a constant .7 along its surface (that is, a perfect circle
in 2D or ball in 3D) has an equilibrium shape. For an en-
semble of drops to be in equilibrium, all the drop radii must
be equal to each other. Such an equilibrium, however, proves
to be unstable [10-12]. The instability proceeds as harsh
competition (larger drops thrive at the expense of smaller
ones) and is similar to Ostwald ripening (OR) .

Now we again differentiate Eq. (3) with respect to time
and substitute du/dt separately in the regions of the pure
phases and transition fronts. After some algebra we obtain

d5p7_( (-/70)gA[K(Uz,p*%K(Ul,p*)]
dr o dK N dK ’
Ydp, |, Tdp. |,

9)

where (), are the total areas (in 2D) or volumes (in 3D) of
the pure phases 1 and 2, A is the total length (in 2D) or
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surface area (in 3D) of the interfaces between the two
phases, and ( ... ) means averaging over all interfaces.

The big fraction in the right hand side of Eq. (9) is analo-
gous to the quantity 7~ !, obtained in the 1D theory. If it is
positive, then in many problems Sp approaches —(.%)/g on
the time scale of 7~L,. At the next, “adiabatic” stage
Sp(t)=—{(Z)(t)/g, so that the dynamics will be governed
solely by the mean curvature of the domain interfaces. Ru-
binstein and Sternberg [11] developed such an adiabatic
theory for a particular example of the globally constrained
RDE.

We solved several model problems of the 2D and 3D
dynamics, using Egs. (8) and (9). First, we proved the linear
stability of an equilibrium planar interface and of a perfect
circular (or spherical) drop with respect to deformations of
their shape. In these problems, the e-fold relaxation time
proves to be of order Lfl that is much longer than 7~L,. In
these examples, the domains are “truly” (rather than margin-
ally) stable with respect to the perturbations preserving the
surface-to-volume ratio of the two phases. However, they
remain only marginally stable with respect to translations.

Extending the treatment of [11], one can obtain two addi-
tional results, pertaining to nonlinear deformations of a 2D
drop. First, any domain of a convex shape finally becomes
perfectly circular. Second, merging singularity (drop-donut
transition) can develop in a finite time in a strongly concave,
two-armed drop.

For their particular example of globally constrained RDE,
Schimansky-Geier et al. [10] predicted instability of an equi-
librium drop with respect to a purely radial mode (see also
[12]). Equations (8) and (9) make it possible to fully inves-
tigate the nonlinear dynamics of this instability. The problem
is formulated in terms of the drop radius R and inhibitor
mismatch Sp. An equation for R is given by Eq. (8):

R=c(t)=—g8ép—2R"" (10)

(again, we consider a drop of phase 1). An equation for &p
follows directly from Eq. (9). Assume for simplicity that the
drop volume is much smaller than the total volume V of the
domain . Then

.5p2~47reR2(g5p+2R71), (11)
where

- K(U;,p,)—K(Uy,py)
V(dK/dp ,)|»

Equations (10) and (11) are integrable. The first integral is
— 8p+(41/3)eR>= const. (12)

Consider the dynamics on the phase plane (R,8p). For the
integral curves (IC) (12) not intersecting the line of equilibria
(LE) 6p=—2/(gR), the corresponding drops never achieve
an equilibrium. Instead, they shrink and disappear in a finite
time. For IC that have two intersection points with the LE,
the smaller-radius point is unstable, while the larger-radius
point is stable, in agreement with the linear analysis [10,12].
The critical (minimum) radius R, of a stable drop is deter-
mined by the tangency point between an IC and the LE:

R.=(2mge)"Y*  The corresponding critical volume
VC:(47r/3)Ri scales like V¥4, while the relative critical
volume V,_/V scales like V™. Notice that this nontrivial
radial dynamics is completely missed by the adiabatic theory
[11].

Equations (8) and (9) can be also employed to analyze the
dynamics of a nonsymmetric 2D (3D) “donut” of phase 1,
bounded by two nonconcentric circumferences (spheres).
Such a donut always develops singularity in a finite time.
Depending on the initial values of the external and internal
donut radii and dp, either the “hole” of the donut (phase 2)
shrinks to zero, or reconnection occurs so that the hole
breaks out, and the donut ultimately becomes a circular
(spherical) drop [15].

Now we consider the statistical aspects of the many do-
mains’ growth as described by the globally constrained RDE.
To the best of our knowledge, this important subject has not
been addressed before. The dynamics of a large number of
drops is conveniently described by the distribution function
(DF) F(R,t) of the drops with respect to their radii. In 3D
we have [JF(R,1)dR=n(t), the time-dependent volume
concentration of the drops. For dp<<p,, no new domains
can develop, so that the DF must satisfy the continuity equa-
tion

r7F+(?RF~0 R=—gép—2R"! 13
o ﬁ( )=0, =—gop . (13)

As usual, the inhibitor dynamics is governed by the global
constraint [compare it with Eq. (11)]:

477'6()

—Sp+ f R3F(R,t)dR =Q = const (14)
0

with €,=€V. Equations (13) and (14) belong to the well-
known set [16—18] of the mean-field models of OR. That a
globally constrained RDE can be mapped into a mean-field
model of OR is a remarkable fact.

Of a central importance in the problem (13) and (14) is an
asymptotic similarity solution for the DF, and related scal-
ings. Lifshitz and Slezov [16] showed (for another variant of
equation for R) that for any extended initial condition
F(R,0), the DF will approach at large times this similarity
DF (SDF). Recently, this result has been supported by exten-
sive numerical simulations [19]. The same problem with a
localized initial condition has not been solved yet. In a par-
allel development, Brown [20] has found numerically a
whole one-parameter family of SDF, with the Lifshitz-Slezov
solution corresponding to a limiting value of the parameter.
The role of these solutions in the general initial value prob-
lem has not been clarified yet and is a subject of long-
standing controversy [19,20]. We will now resolve this con-
troversy, working with the model (13) and (14).

First of all, in the limit of r—o0, Egs. (13) and (14) have
a one-parameter family of solutions for the SDF that can be
found analytically. The similarity ansatz is F(R,t)
=¢72®(R/tY?). Correspondingly, Sp goes down like
—g 1Bt7 12 n decreases like 5t~ *2, and the average drop
radius grows like yt'2. The positive coefficients =M,
X=M,/My, and B=M,/(2M,) are determined by the
moments M, of the function D(¢):
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M= [&D(£)dEk=0,1, and 2. ® satisfies an ordinary
differential equation (ODE) and a normalization condition
which one obtains from Egs. (13) and (14), respectively.
Equation (14) yields

30

41e

f:f%b(g)dg: (15)

Integrating the ODE for @, we obtain

£ ¢ dé )
q)(g)ocmexp(—3ﬂf E-2pe+4)

Further results depend on . The case 0<B<2 must be
ruled out, since the integral (15) diverges logarithmically.
For B=2, we obtain the Wagner’s SDF [17]:

6
©(§)“§(2—§)756XP(—E) (16)
for £<2, and ®(&)=0 elsewhere. This solution vanishes at
&=2 together with all its derivatives, and it is a counterpart
of the Lifshitz-Slezov solution [16], obtained for another
variant of R.
In the case of 8>2, formal integration yields

D(§)xcgle_—g| 52+ 3p2NE 4
X| &, — g~ 32382 17

where £, =B+ (B%>—4)"2. A positive, nonsingular solution
is constructed by using Eq. (17) on the interval (0,£_) and
setting ®(£)=0 for £=¢&_ . The condition ®(£_)=0 re-
quires that 8<<5/2. All SDF from (17) vanish at {=¢_, but
their derivatives are nonzero there. Therefore, the whole
family of SDF is defined on quite a narrow interval of the
parameter B: 2<[3<<5/2, the left border of which corre-
sponds to the Wagner solution.

|‘J]
98]

Finally, we find the selection rule for the “correct” SDF.
Employing the arguments of Lifshitz and Slezov [16] for our
variant of R, [15] we see that it is the Wagner solution (16)
that will be the attractor of any extended initial distribution.
Now consider a localized initial distribution which is posi-
tive on the interval [O,R,(t=0)] and zero for
R>R,(t=0). First, the solution will always remain local-
ized on an interval [O,R ,(¢)]. Furthermore, we find from Eq.
(13) that the leading term of the expansion of F(R,t) in the
vicinity of R=R,,(t) can be written as A(?)[R,,(t)—R]*,
where N\ is uniquely determined by the initial condition:

d InF(R,t=0) |

T d ln[R,,,(tZU)‘R]lR:R (1=0)

(18)

It is easy to see that parameter N remains invariant for any
localized solution of the problem (13) and (14) [21]. There-
fore, it is the double logarithmic derivative of the initial dis-
tribution, evaluated at R=R,, that uniquely selects the “cor-
rect” SDF. Equating the power exponent of the binomial
&_—¢in Eq. (17) to the parameter N immediately yields the
selected S3:

B=2(N+52)(A+1)""2(N+4)" 12 (19)

The same arguments are applicable to all mean-field theories
of OR with other equations for R (see the list in [18]). It is
important that physical and physicochemical systems, de-
scribed by Egs. (1) and (3) in the limit of many drops, rep-
resent the simplest paradigm of OR, as the mean-field theory
in this case becomes ‘““almost exact” [22].

We are very grateful to I. Aranson, F.-J. Elmer, J.
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